Скорость коррозии: справочник и датчики с индикаторами для определения процесса ржавчины металлов, ее расчет и зависимость от среды

В настоящее время известно много показателей (критериев) оценки степени или скорости коррозии металлов. Рассмотрим основные из них.

Критерии

Вам будет интересно:Процессы изобарный, изохорный, изотермический и адиабатный для идеального газа

Скорость коррозии - критерии

В настоящее время в проектировании техники используют несколько показателей скорости коррозии:

  • По прямому способу оценки: уменьшение массы металлической детали на единицу поверхности – весовой показатель (измеряется в граммах на 1 м2 за 1 час); глубина повреждений (или проницаемость коррозионного процесса), мм/год; количество выделяющейся газовой фазы продуктов коррозии; продолжительность времени, в течение которого появляется первое коррозионное повреждение; число центров коррозии на единицу площади поверхности, появившихся за определенный срок.
  • По косвенной оценке: сила тока электрохимической коррозии; электрическое сопротивление; изменение физико-механических характеристик.

Канал ДНЕВНИК ПРОГРАММИСТА

Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Первый показатель по прямому методу оценки является наиболее распространенным.

Снижение скорости коррозии металла

Скорость коррозии металла – классификация, оценка и методы снижения

Вред, причиняемый коррозией, не сводится только к разрушению самих изделий или деталей из металлов. Кроме того, что при ее воздействии приходят в негодность уже изготовленные предметы, пропадают усилия и труд людей, потраченные на производство. Основная причина расходов — это замена или ремонт деталей, вышедших из строя под влиянием этого процесса.

От того, где и как используются изделия, и от нахождения металла в грунте, на воздухе, при создании подводных трубопроводов или судов, различают два вида воздействия этого процесса:

  1. Химическое. Коррозия, имеющая название «химическая», наблюдается в сухих газах и веществах, не проводящих электричество. Она происходит в доменных печах, при прокате или ковке стали. К веществам при этом процессе относят сероуглероды, керосин, бензин. Химическая коррозия может наблюдаться в двигателях автомобилей и их бензиновых емкостях, нефтехимическом оборудовании, нефтепроводах.
  1. Электрохимическое. Электрохимическая коррозия сопровождается образованием электрических токов малого напряжения и протекает по принципу гальваники, когда металл и окружающая среда (морская, речная вода, сырая почва, влажная атмосфера, кислоты, основания) служат катодом и анодом.

В случае равномерной коррозии скорость может быть определена по формуле:

v=Δm / S•t, где

v — скорость коррозии, которую обычно выражают в таких единицах: г/(м2•ч) или мг/(см2•сут);

Δm — убыль (увеличение) массы;

S — площадь поверхности;

t — время.

Снижение скорости и уменьшение глубины коррозии является главной целью защиты железа и его сплавов от разрушения, вызванного этим процессом. Уменьшение поражения ржавчиной металлических деталей и конструкций достигается несколькими способами:

  • изменением факторов природной среды, действующей на металл;
  • путем получения антикоррозийных сплавов;
  • нанесением слоя покрытия, не подверженного коррозии;
  • напылением на поверхность изделия металлов, имеющих более высокую стойкостью к среде, которая вызывает это явление;
  • производится защита электрохимическими способами.

Изменение окружающей среды, вызывающей ржавчину, достигается внесением в нее различных ингибиторов коррозии. Этот способ находит все большее применение для снижения коррозии стали.

Сталь — наиболее распространенный вид металлических сплавов, используемых человеком, который производится путем выплавки и смешивания с различными элементами, создающими необходимые качества получаемого материала. За счет этого коррозия стали может снижаться.

Добавляют химические элементы на стадии получения, причем эти добавки не влияют на общие показатели металла. Этим способом получают легированные, нержавеющие стали.

Покрытия, предотвращающие явление ржавления или замедляющие его, называются антикоррозийными.

Слои могут наноситься лакокрасочным и гальваническим способами. Иногда их совмещают, получая покрытие, при котором коррозия стали снижается до минимума, что расширяет область применения материала.

Электрохимическим предохранением от коррозии является то, которое непосредственно влияет на смену потенциала железной детали в зависимости от области использования. Такая реакция проводится, когда заведомо известно место применения изделия. Она может быть анодной или катодной.

Самое неприятное в происходящем явлении, что ржавление (коррозия стали) является причиной разрушения или снижения прочности уже готовых изделий, которые непосредственно влияют на жизнь человека.

К примеру, аварии на различных трубопроводах, осуществляющих подачу газа, нефти; поломки или крушение разводных мостов, металлических конструкций, подъемных кранов.

Коррозии стали постоянно изучаются, и все новые способы предохранения от этого процесса разрабатываются с появлением новых технологий и развитием науки.

Источник: https://tutmet.ru/skorost-korrozii-metalla-stali-grunte.html

Основные факторы, влияющие на скорость коррозии

На скорость разрушения металла влияют следующие группы факторов:

  • внутренние, связанные с физико-химической природой материала (фазовая структура, химический состав, шероховатость поверхности детали, остаточные и рабочие напряжения в материале и другие);
  • внешние (окружающие условия, скорость движения коррозионно-активной среды, температура, состав атмосферы, наличие ингибиторов или стимуляторов и другие);
  • механические (развитие коррозионных трещин, разрушение металла под действием циклических нагрузок, кавитационная и фреттинг-коррозия);
  • конструктивные особенности (выбор марки металла, наличие зазоров между деталями, требования к шероховатости).

Снижение скорости коррозии металла

Скорость коррозии металла влияет на продолжительность срока службы металлических изделий, которые находят применение практически во всех сферах жизнедеятельности человека. Их используют в воздухе, воде, почве. Показателем процесса невосприимчивости молекул и атомов металла к воздействиям внешней среды служит их устойчивость к коррозии.

Физико-химические свойства

Вам будет интересно:Такие обычные люди, или значение «почему бы и нет»

Скорость коррозии - влияние физико-химических свойств

Наибольшее значение среди внутренних факторов коррозии имеют следующие:

  • Термодинамическая устойчивость. Для ее определения в водных растворах применяют справочные диаграммы Пурбе, по оси абсцисс которых откладывается pH среды, а по оси ординат – окислительно-восстановительный потенциал. Сдвиг потенциала в положительную сторону означает большую устойчивость материала. Ориентировочно она определяется как нормальный равновесный потенциал металла. В реальности материалы корродируют с различной скоростью.
  • Положение атома в периодической таблице химических элементов. Металлы, наиболее подверженные коррозии, – это щелочные и щелочноземельные. Скорость коррозии снижается при увеличении атомного номера.
  • Кристаллическая структура. Она оказывает неоднозначное влияние на разрушение. Крупнозернистая структура сама по себе не приводит к росту коррозии, но благоприятна для развития межкристаллитного избирательного разрушения границ зерна. Металлы и сплавы с однородным распределением фаз корродируют равномерно, а с неоднородным – по очаговому механизму. Взаимное расположение фаз выполняет функцию анода и катода в агрессивной среде.
  • Энергетическая неоднородность атомов в кристаллической решетке. Атомы с наибольшей энергией расположены в углах граней микронеровностей и являются активными центрами растворения при химической коррозии. Поэтому тщательная механическая обработка металлических деталей (шлифовка, полировка, доводка) повышает коррозионностойкость. Данный эффект объясняется также формированием более плотных и сплошных оксидных пленок на гладких поверхностях.

Результаты коррозии металла. Методы определения скорости коррозии.

По какому бы типу ни протекала коррозия, в результате ее металл разрушается. Прежде всего страдает внешний вид изделия: гладкая отполированная поверхность становится тусклой, затем шероховатой и, наконец, покрывается различными химическими соединениями — продуктами коррозии. Она проникает и в глубь металлических изделий, окончательно разрушая их.

Метод определения потери веса металла. Потери от коррозии.

Для определения величин коррозийной устойчивости разных металлов, используют несколько шкал оценок. Самый распространенный метод оценки по потере веса металла.

Метод заключается в взвешивании детали до того, как она подвергается коррозии, а затем после удаления коррозии с поверхности детали, по разности веса вычисляют потерю металла.

Принято, например, считать металл вполне стойким, если потери в весе вещества не более 0,1 г с 1 м2/ч поверхности. При потере металла от 3 до 10 г · м2/ч металл считают малостойким, при большей потере — нестойким.

Определение скорости коррозии металла.

Иногда коррозионную стойкость определяют по количеству выделившегося водорода, например, при растворении металла в кислотах.

Образец металла, предварительно обработанный соответствующим образом, погружают в раствор электролита, например кислоты, накрывают воронкой, на которую одета бюретка. Бюретку наполняют тем же раствором кислоты. Выделяющийся газ (обычно водород) через воронку попадает в бюретку и вытесняет из нее раствор кислоты.

По количеству выделившегося водорода, а также по скорости его выделения судят о коррозионной стойкости металла.

Этот метод часто используют для определения скорости протекания химического взаимодействия металла с такими кислотами, как серная, соляная, а также иногда для определения характеристики растворения алюминия и цинка в растворах щелочей и кислот.

Результаты коррозии металла.

Однако методы оценки коррозионных разрушений по потере веса или по выделению водорода не всегда дают представление как о характере самого процесса коррозии, так и о возможных ее последствиях.

Источник: https://sprav0chnik.ru/metody-opredeleniya-skorosti-korrozii-rezultaty-korrozii-metalla/

Шкала грубой оценки коррозионной стойкости металлов

Группа стойкости Глубинный показатель коррозии, мм/год Балл
Совершенно стойкие 0,001 1
Весьма стойкие 0,001 … 0,005 2
0,005 … 0,010 3
Стойкие 0,01 … 0,05 4
0,05 … 0,10 5
Пониженно стойкие 0,1 … 0,5 6
0,5 … 1,0 7
Малостойкие 1,0 … 5,0 8
5,0 … 10,0 9
Нестойкие 10,0 10

Состав и концентрация нейтральных растворов

Скорость коррозии в растворах солей

Скорость коррозии в нейтральных растворах зависит в большей степени от свойств соли и ее концентрации:

  • При гидролизе солей в коррозионной среде образуются ионы, которые действуют как активаторы или замедлители (ингибиторы) разрушения металла.
  • Те соединения, которые увеличивают pH, повышают также скорость деструктивного процесса (например, кальцинированная сода), а те, которые снижают кислотность, – уменьшают ее (хлористый аммоний).
  • При наличии хлоридов и сульфатов в растворе разрушение активизируется до достижения некоторой концентрации солей (что объясняется усилением анодного процесса под влиянием ионов хлора и серы), а затем постепенно снижается из-за уменьшения растворимости кислорода.

Некоторые виды солей способны образовывать труднорастворимую пленку (например, фосфорнокислое железо). Это способствует защите металла от дальнейшего разрушения. Данное свойство используется при применении нейтрализаторов ржавчины.

Коррозия винтовых свай. Как продлить срок службы свайно-винтового фундамента?

Для фундамента на винтовых сваях наибольшую опасность представляют два подвида электрохимической коррозии – почвенная и атмосферная.

Почвенная коррозия – разрушение подземных металлических сооружений под действием почвенного электролита. На поверхности металлических изделий, находящихся в контакте с почвенным электролитом, из-за местных неоднородностей металла или электролита возникает большое количество коррозионных элементов.

Однако нельзя забывать, что почвы и грунты чрезвычайно разнообразны и не только в пределах крупных регионов, но и в пределах одного небольшого участка. То есть на сравнительно небольшой площади могут встречаться грунты с разной степенью коррозионной агрессивности: высококоррозионные (тяжелые глинистые, которые на протяжении долгого времени удерживают влагу), среднекоррозионные (суглинки) и практически инертные в коррозионном отношении (супеси, песчаные грунты).

На разницу протекания коррозионных процессов в разных грунтах указывает и Британский стандарт BS 8004 «Фундаменты» (пункт 10.3.5). В соответствии с данным документом остаточная толщина стальных свай, устанавливаемых в ненарушенные почвы, «остается в пределах допустимых значений толщины даже после многих десятилетий эксплуатации», так как скорость коррозии в данных грунтах не превышает 1-2 мм за 100 лет. В то же время в нарушенных почвах «использование окислительно-восстановительного потенциала, удельного сопротивления грунта и значений рН может иметь определенное значение для прогнозирования скоростей коррозии». Однако даже в этом случае толщину металла следует подбирать исходя из степени агрессивности нарушенных почв.

Выдержки из Британского стандарта показывают, что на скорость протекания почвенной коррозии влияет и ряд дополнительных факторов: влажность грунта, его пористость (воздухопроницаемость), кислотность, электропроводность, минералогический состав и неоднородность. В зависимости от характера изменений какого-либо из указанных параметров может произойти как ускорение коррозионных процессов, так и их замедление.

Атмосферная коррозия – разрушение конструкций, оборудования, сооружений, эксплуатируемых в атмосфере. Считается, что она менее губительна, чем почвенная. Однако рассматривая это утверждение, необходимо учитывать тип почв: если это тяжелая глинистая почва и мероприятия по водоотведению не проведены, то она как правило хорошо удерживает влагу. Следовательно, скорость коррозии будет выше. Если это суглинок, то разница между почвенной и атмосферной коррозией уже менее значительна. Если же это супесь или песок, то степень разрушительности почвенной коррозии сопоставима с атмосферной.

Скорость атмосферной коррозии также не является величиной постоянной и зависит от природы металла, окружающей его атмосферы и особенно влажности воздуха. Эта скорость изменяется от минимума для сухой и до максимума для влажной атмосферной коррозии.

Все это свидетельствует, что металл разрушается не с постоянной скоростью, а скачкообразно: на определенном этапе скорость может увеличиться (сразу после установки из-за вмешательства в структуру грунта, весной/осенью при высокой влажности воздуха), а затем уменьшиться в разы (из-за уплотнения грунта, произошедшего естественным путем, в жаркий сухой сезон). То есть скорость протекания процесса коррозии металла имеет нелинейный характер и находится в сильной зависимости от условий окружающей среды, воздействуя на которые можно свести негативное влияние внешних факторов к минимуму, увеличив тем самым срок службы металлоконструкций не на один десяток лет.

Так ограничение доступа кислорода и/или воды может привести к существенному замедлению процесса коррозии. Для фундаментов из винтовых свай обязательна правильная обшивка цоколя с обустройством дренажной системы, которая снижает влажность, а значит и скорость развития коррозионных процессов. Технические решения по устройству цоколя для фундамента из винтовых свай собраны в разделе «Отделка и утепление цоколя».

2.1. Особенности влияния условий протекания почвенной коррозии на скорость развития коррозионных процессов винтовых свай

Существует ряд дополнительных факторов, на которые также стоит обратить внимание, рассматривая механизмы воздействия почвенной коррозии на металлические конструкции.

Если катод и анод расположены близко друг к другу (например, стальная свая), а рН влаги в грунте >5, коррозионные продукты могут образовывать покрытие, защищающее поверхность стали. В этом случае коррозия будет равномерной, и ее скорость будет падать во времени.

Если анод и катод удалены друг от друга (например, стальной трубопровод), и это удаление составляет порядка 1-2 км, то образующиеся на аноде ионы металла будут мигрировать с током к катоду. Продукты коррозии будут оседать между анодом и катодом. Поэтому они не образуют защитного покрытия на аноде, где будет активно проходить питтингообразование. Поскольку защитное покрытие на аноде не образуется, скорость коррозии не убывает во времени, а может наоборот возрастать. Если площадь катода во много раз больше площади анода, то анодная плотность потока, а значит, и скорость питтингообразования, будет высокой.

Исследованию работы стальных свай уделено немало внимания. К примеру, английские исследователи Е. Прентис и Л. Уайт в своей работе «Подводка фундаментов под существующие здания» отмечают, что металлическая оболочка сваи остается неповрежденной до тех пор, пока она соприкасается с грунтом. Одним из возможных объяснений этого явления может служить то обстоятельство, что поверхность оболочки каждой такой сваи вследствие наличия в грунте кислорода несколько ржавеет, причем этот образующийся слой ржавчины благодаря соприкосновению с землей удерживается на месте, не позволяя обнажиться следующему слою, который мог бы оказаться подверженным коррозии. Иными словами, благодаря образованию некоторого налета ржавчины труба оказывается защищенной этим слоем от дальнейшего ржавления. Они также приводят в качестве примера тот факт, что в соответствии с нью-йоркскими строительными нормами при использовании набивных свай в стальных оболочках под новое строительство внутреннюю арматуру не применяют, а из эффективной площади сечения трубы при расчетах исключают наружное кольцо толщиной в 1,5 мм. Подразумевается, что остальное сечение трубы коррозионному разрушению подвергаться не будет. Обобщая американский исследовательский опыт, Д.А. Леонардс и другие в труде «Основания и фундаменты» анализируют опыт применения трубчатых и Н-свай в Нью-Йорке, Кливленде, Чикаго и указывают на то, что обычно коррозия стальных свай отсутствует, если они находятся ниже уровня циркуляции воздуха, т.е. примерно на 60 см ниже поверхности земли, а колебания УПВ в отсутствие воздуха не влияют на их разрушение.

Остановимся подробнее на вопросе коррозионного разрушения металлических свай, погружаемых с вытеснением грунта в их объеме и работающих затем в уплотненном глинистом грунтовом массиве. Как правило, плотность грунта у боковой поверхности свай, погружаемых с полным вытеснением грунта, увеличивается на 10% и более. При этом, соответственно, снижается пористость грунта, а коэффициент фильтрации уменьшается в десятки и сотни раз. Действительный срок службы таких свай в зависимости от инженерно-геологических и эксплуатационных условий можно установить.

В результате уплотнения грунта скорость коррозии свай резко снижается. Известный советский инженер Э.М. Гендель в своей работе «Инженерные работы при реставрации памятников архитектуры» пишет, что коррозирует только внешний слой металла толщиной 3-4 мм, а образовавшаяся при этом пленка защищает его от дальнейшего разрушения. Отметим также, что даже начавшийся процесс коррозии сваи в грунте должен стать затухающим: связав весь свободный кислород, продукты коррозии, значительно увеличиваясь в объеме по сравнению с исходным металлом, дополнительно уплотняют окружающий массив грунта.

Похожие темы научных работ по физике , автор научной работы — Бырылов Иван Фадиалович

Dependence of speed of corrosion of underground tube-wire from electrical resistance and ion strength of soil electrolyte.

Способы предохранения нержавейки от МКК

Очистить от ржавчины поверхность порой бывает сложно, особенно при глубоком проникновении дефекта. Разработан ряд методов против межкристаллитной коррозии, вот основные из них:

  1. Отжиг (стабилизирование). Ферритные стали обрабатывают высокими температурами (+750…+900 градусов), за счет чего концентрация хрома на поверхности повышается, при этом распределение элемента становится более равномерным.
  2. Уменьшение содержания углерода. Если концентрация вещества будет менее 0,03%, то металл станет практически не подверженным межкристаллитной коррозии.
  3. Закалка в воде. Этот метод применим для аустенитной стали, он помогает карбидам хрома перейти в более подходящую форму и сконцентрироваться на границах зерен металла.

Чтобы убрать у нержавейки склонность к МКК, в нее вводят и новые добавки: титан, тантал, ниобий, но это приводит к серьезному удорожанию материала. Их количество должно быть в 5-10 раз больше, чем норма углерода, и тогда металл будет не подверженным ржавлению.

Методы оценки

Скорость коррозии - методы оценки

Существует несколько способов оценки скорости разрушения металлов в агрессивных средах:

  • Лабораторные – испытания образцов в искусственно смоделированных условиях, близких к реальным. Их преимуществом является то, что они позволяют сократить сроки исследования.
  • Полевые – проводятся в естественных условиях. Занимают длительное время. Преимуществом такого метода является получение информации о свойствах металла в условиях дальнейшей эксплуатации.
  • Натурные – испытания готовых металлических объектов в естественной среде.

Источник

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...